The Composite Drawing in Architectural Education
Chris Ford
cford4@unl.edu
University of Nebraska - Lincoln

Abstract

This paper will present the context of, and larger educational pedagogy for, the execution of Composite Drawings as a presentation requirement for academic studios. Although Composite Drawings have a proven history as both effective and engaging graphic artifacts, we see less of them in 2012 than we have in previous years. This paper will contextualize the contemporary condition in which Composite Drawings are today conceived, identify the cultural impediments that must be transcended, and share those physical attributes of student solutions that have proven to be most compositionally-effective. This paper and associative presentation shall incorporate historical examples by professionals and student work from eight years of architectural design studios to further demonstrate both the benefits and liabilities of the Composite Drawing as a focused representational endeavor.

Fig 1. Composite Drawing: Hostel for Architecture students in New York City. 3'-0” high x 6'-6” wide. Ryan Henrickson, Spring 2009.

Premise

With the exception of design-build studios, the highest manifestation of our students' architectural work lay not in its own construction, but rather in the quality and achievement found in their respective final presentation materials. Due to the scale, cost and length of schedule required to execute Architecture, design professionals and students alike are more often engaged in the representation of designed things more than the delivery of designed things. In recognition of its direct relationship to architectural production, then it is imperative to identify those contemporary issues that directly affect architectural representation, and mobilize to either correct deficiencies or embrace positive advancements.

Today, any architectural educator who categorically argues the ubiquitous presence of computers as detrimental to our respective schools of architecture have likely marginalized or stigmatized themselves as being out of touch with contemporary production methodologies. If one reflects back upon more recent representational history, the measure of effective architectural representation does not lay in the selection of representational means, but only in the evaluation of the results that are achieved. To this end, the properties of legible orthographic drawings, whether hand drafted or computer drafted, are exactly the same. Both require a hierarchy of lineweights. Both require a palette of linetypes to differentiate architectural attributes. Both require sufficient linework to guarantee a match between author intent with viewer comprehension. Furthermore, the properties of legible perspectival images, whether hand constructed or computer generated, are exactly the same. Both require correct perspectival construction. Both require thoughtful composition. Both aspire to engage the eye of the viewer.

Effective and engaging architectural representation is only achieved by authors who personally commit themselves to generate effective and engaging architectural representations. This path to achievement operates independently of computational tools, not because of them. The question of tool selection is irrelevant to our larger interest in effective architectural representation as there are no guarantees of quality in any decision regarding means – Poor representation can be achieved by either hand or computer. Therefore, we must maintain a position of being results-oriented, and not tool-oriented.
Contextual Change in Teaching Architectural Representation

Before architectural curriculums were centered in institutions of higher learning, the atelier model prevailed. The creation of both effective and engaging presentations was paramount to the success of a respective professional practice, as they were the primary vehicle for communicating architectural intent to non-architects. Independent of the actual act of architectural conception, presentation drawings were destinations unto themselves and their respective level of finish either positively or negatively influenced stakeholders about the merit of the forthcoming architecture. The role of presentation drawings were of such strategic importance to the success of a firm, that renowned principals themselves took personal interest in their execution – Presentation drawings were the currency with which they worked. For instance, Frank Lloyd Wright recognized that for his practice to prosper, “his clients had to be able to ‘read’ the idea clearly and succinctly from the drawings shown to them” (Pfeiffer 9). This prompted Wright to personally train his draftsmen in the early years of his practice, and his apprentices in the latter years of his practice.

Architectural educators inherently recognize the need to sequence a beginning student’s architectural education. In the architectural academy in 2012, the teaching path to effective and engaging architectural representation is a treacherous one. Considering the range of skills developed and sensibilities bestowed during one’s trajectory through a respective curriculum, representation skills are first introduced in the beginning years with required studio and non-studio courses, and then honed across the number of curricular years required. Consistent with European curriculum models, American architectural curriculums also have students produce contour drawings which emphasize the edges of subjects, value shape drawings which emphasize the tonal surface qualities of subjects, and introductory computer drawings which emphasize both contour and value shape methods using both vector and raster data.

While novice design students struggle to bring their representation skills up to the same level as their design intent, this is no longer a problem with more experienced students whose skill in architectural representation actually exceeds their skill in architectural design. In publishing, this is one reason why young interns are instrumental in the making of compelling and distinguished single images for designs that are otherwise authored by architects with more professional experience. With each successive year, graduates of our architecture programs join the profession with a software skill set that exceeds the graduation class of one year prior. There are several causes for this. Because a student can operate as an autonomous author and independent of group consensus, the openness found in a design studio is matched with personal exploration and experimentation. Considering the larger scale of the respective school culture, this same student benefits from witnessing other colleagues’ experimentation with representation in different ways. This can also be attributed to the nature of the strategic licensing agreements that we find between software companies and academic degree programs. Software licenses expire each academic year, and are replaced with the next year’s software release. As new hires in professional offices produce superior results using the latest release of software, this places strategic pressure on proprietors to upgrade their respective software packages.

Although our educational discourse has now graduated from debating preliminary issues introduced by the arrival of the computer, pedagogical issues remain, especially as they relate to a second generation of issues and impediments that are only now coming into focus: These are 1.) our thickening interfaces with representational media, 2.) a prevailing acclimation for expediency, 3.) the re-sequencing of content production and final presentation composition, 4.) the various non-productive uses of the personal computer, and 5.) the de-emphasis of two-dimensional hardcopy presentations.
The Thickening Interface

With unfortunate consequences, an increasing number of Architecture students are learning about drawing types as a choice from software pull-down menus, without first fully appreciating the history of proven architectural representation methods developed over the past 400+ years. While it remains that the qualities of an effective architectural drawing are identical for one that is either hand-drafted or CAD-drafted, a pre-requisite for comprehension is the informed exposure to, and acquired knowledge of, distinct drawing types. Beginning students are better served in recognizing their own participation in, and contribution to, a history of representation types that is in turn much larger than themselves. It is only through a developed respect for historical examples that students can learn from best practices, extract particular aspects, and choose to apply these desired aspects as they see fit to their own representational problem at hand. In this way, distance is created between a proper results-oriented emphasis of creating specific architectural drawings, and the means-oriented adoption of outputting architectural drawings in an incidental way. Furthermore, it correctly focuses the outlook of the beginning student on the finish quality of architectural drawings and images. Despite the popular reasons for using them, Rhino does not guarantee architecture, Revit is not a silver bullet application, and Grasshopper is neither creative nor intelligent in its operation. In fact, the use of any of these software applications thickens the interface that exists between the architectural author and the forthcoming architecture that is being represented.

Fig 3. Composite Drawing: National Museum of Agricultural Technology. 3’-0” high x 8’-0” wide. Ryan Ferguson, Fall 2010.

The intent in making this observation is not to demonize computer applications used in architectural representation. As a discipline, we have now grown dependent upon them for the vast majority of our production needs. It is however, necessary for us to be explicitly aware of the issues in play, and in particular, the increasing degrees of separation that are building between ourselves and our architectural work.

When an architect personally engages in the making of architectural design, there is no degree of separation between the author and the signified architecture. While the same architect will have produced some evidence of architectural representation at earlier points in the design process, the author who also acts as maker becomes engaged in a live dialogue with the appropriation of material at a 1:1 scale. This direct contact with final material eliminates the need for extensive architectural documentation, as instructions are no longer being communicated to others for either construction or legal purposes.

When an architect personally draws on a paperspace to represent an architectural design, there is one degree of separation between the author and the signified architecture. Each orthographic drawing executed has scale-specificity at the point of origination. The physical attributes, finished quality, and legibility of each orthographic drawing can be evaluated in real time with certainty. Each paperspace is in full view by the author at all times. In the majority of cases where architects are not also the makers of the architectural work, this is simultaneously the simplest and most direct form of architectural representation. One’s relationship with a paperspace however, is the source of the first degree of separation.

Beyond architectural documentation, an author who draws and designs directly on a paperspace produces an immediate feedback loop to their larger design thinking. For many modern architects such as Paul Rudolph, the act of drawing was both essential to, and inseparable from, the creative and intellectual act of architectural conception. For Rudolph, his design process was so “intimately connected with the method of drawing that [he had] to remember that the rendering is only a means to that important end, the building” (Rudolph 8).

When an architect personally uses a CAD program such as Autocad or Revit to represent an architectural design, there are two degrees of separation between the author and the signified architecture. Each orthographic drawing conducted has a 1:1 scaled relationship at the point of origination, and must be scaled for output. The physical attributes, finished quality, and overall legibility of each orthographic drawing cannot be evaluated in real time as it is dependent upon a series of factors including level structure, object color, pen tables, target sheet size, specific application preferences, and hardware settings specific to each large format plotter used. Each paperspace is never in full view by the author at any time. While zooming out will provide a comprehensive view of the overall layout, the content has been
electronically interpolated as best as the screen resolution will allow. While zooming in will provide a more local view of the layout closer to finished target scale, the content is too cropped to understand its compositional relationship to other drawings and images on the page. Furthermore, exact lineweights and linetype scales can never be determined with certainty prior to evaluating a physical hardcopy print. The exact same CAD file using the exact same pen table will print differently on two different plotters.

Despite the thickening interface, there is a tremendous upside to using CAD programs for architectural representation. Relative to the one-draftsperson-per-drawing workflow that could be found in pre-computer architectural offices, there is a benefit to architectural production when multiple persons can work concurrently with each referencing others through the software-enabled and server-based “x-ref” function. Unlike the draftsperson who produced architectural content on a specific paperspace, the production of architectural content such as drawings or images are now divorced from any specific type of media. Decisions related to content composition, layout and media are now fully independent from the creation of content. This division however, is the source of the second degree of separation.

When an architect personally uses a scripting program such as Grasshopper to represent an architectural design, there are three degrees of separation between the author and the resultant architecture. Authors of scripts work primarily in a programming space which is operationally separate from the 1:1 architectural modeling space. By programming routines made of buttons, wires and sliders, an architect models architectural attributes that can be dynamically controlled. However, scripting requires literacy in a non-architectural language for use, and this is the source of the third degree of separation.

Fig 4. Composite Drawing: National Museum of Agricultural Technology. 3'-0" high x 8'-0" wide. Tara Meador, Fall 2010.

Acclimation for Expediency

While there are exceptions, the average beginning student values the computer for architectural production primarily for its quickness in rendering and expediency in desktop publishing than for its ability to assist authors in the development of more highly-refined architectural representations. As a deadline rapidly approaches, the average student will more often hedge their respective time management to maximize time for changes to a computer model instead of moving forward to the consideration of their respective final presentation. Computer models may be completed, and drawings and renderings may be generated, but there is usually an adverse impact on both the finish quality of the drawings and images produced, as well as the completeness, coherence, or wholeness of the final presentation. The printed final presentation is no longer primary, and the question of final presentation composition now chronologically follows the creation of specific pieces of representational content.

Re-sequencing of Content Production prior to Content Composition

Prior to the computer being adopted for workflow purposes, the nature of a draftsperson applying pigment directly to a paperspace required a pre-consideration of final composition prior to actual content generation. When compared with a drawing room in which multiple draftspersons work separately on their own respective paperspaces, CAD programs enable one person or several people to generate architectural content independent of paperspace. This separation between the generation of raw architectural content from the act of composition-specific drawing enables a greater range of final compositional possibility. From today’s perspective forward, the computer-assisted production of architectural content shall always precede the question of final presentation composition, if this question is breached at all.

Non-Productive Uses of the Personal Computer

The use of the computer as a means for productive architectural representation does not seem to be properly registering with our current generation of student. In contrast to the majority of persons who now have fulltime teaching positions, incoming students have never known life without a personal computer. (Most freshman students who will enter our respective Fall 2012 courses were born in 1994.) For them, the computer also has many other uses beyond
architectural representation, all of which compete for the author’s attention and distracts them from other productive tasks. Music wants to be played, webpages want to be browsed, emails want to be returned, Facebook statuses want to be updated, Skype alerts want to be accepted, and friends in other studios want to instant message. Even if a student can control their respective engagement with these non-productive uses of his / her computer, all of the items listed above come with visual distractions such as physically blinking, glowing, or popping icons in the bottom right corner of one’s screen, neverminding any audible indicators. Any one of these distractions prevents students from ascertaining a highly productive state of both intellectual and creative engagement that comes with a complete emergence into the design task at hand. Combined, these digital distractions make the execution of productive work, much less the sustained consideration of effective and engaging architectural representations, an impossibility. The only way to combat this trend is to prompt students to develop greater self-awareness and stronger self-discipline, and in so doing, become better digital citizens when determining one’s personal digital activities, however seemingly harmless, in the context of the larger goal of academic performance. However, in the absence of sufficient willpower, then one can always use software applications such as StayFocusd and Leechblock to limit digital distractions.

Fig 5. Composite Drawing: Hybridized Urban Infrastructure. 2’-0” high x 8’-0” wide. Kate Hier, Spring 2011.

A De-Emphasis of Two-Dimensional Hardcopy Presentations

As two-dimensional architectural representation is increasingly generated through digital means, representational content is created for use in multiple locations; in large-format print, in small format print, in large projection, and in both high and low traffic websites. This anticipation of multiple future uses generates feedback that discourages the author from formatting final content that is compositionally specific to any single presentation type. Instead, there is motivation for the management of distinct and separate design deliverables so as to better address the diverse formatting needs of each media type on its own, and future unknown, terms. Overall, this level of non-specificity in content formatting has contributed to a proliferation of independent “single-serving” drawings and images. In turn, this is increasing the number of layouts that are steeped in adjacency, where architectural drawings and images are similarly-scaled, and the absence of hierarchy yields a visual field condition across which the eye moves at consistent speed.

These visual field layouts manifest themselves as a result of two slightly different strategies, yet both achieve an effect of sameness across their surface. For the first strategy, each drawing or image is positioned on its own respective paperspace, usually centered on the page, with coordinated top-down and left-right alignments, and pinned up with equally-formatted margins across multiple paperspaces. In this manner, the recognition of projected relationships is largely the responsibility of the viewer. Although the author may arrange the drawing and image paperspaces in a deliberate way, this layout strategy is characterized by the distance between drawings so that each one can first be considered on its own terms before being considered as a member of a larger whole. Any cognitive relationship found to exist between drawings is more the result of an engaged viewer, and less the work of an author with specific intentions. For the second strategy, each drawing or image is positioned according to a dimensional division of a larger single paperspace. These are typically more dense visual fields as they have greater content-to-whitespace ratios. To this end however, there is often a lack of hierarchy between the constituent drawings and images, which further contributes to the characterization of this strategy as a visual field. Authors of these types of layouts intentionally place equal emphasis on the entirety of the presentation, towards quantifying their effort through visual proliferation. When considering both strategies however, there is nothing inherent about the drawings, or the paperspaces they occupy, that forge additional engaging compositional relationships between them.

Fig 6. Composite Drawing: Hybridized Urban Infrastructure. 2’-0” high x 8’-0” wide. Tyson Fiscus, Spring 2011.
While either presentation strategy may demonstrate both competency and effectiveness, these are particularly challenged to yield either inspired or engaging layouts for presentation purposes, beyond the quality of the content proper. Nonetheless, this remains a popular strategy in architectural representation, particularly for contemporary Dutch architecture firms including BIG, MVRDV, and OMA.

A Decline in Representational Culture

Our discipline’s collective culture of strongly-composed hardcopy presentation drawings has been weakened by an understandably expanded interest in multiple presentation types. However, our schools of architecture are witnessing an average overall decline in their respective cultures of architectural representation. This is precipitated largely by an unwelcome shift in popular focus from being results-oriented to a lesser position of being means-oriented.

If forthcoming architectural proposals are to find greater effectiveness and resonance with both architectural and non-architectural audiences, then degrees of separation must be collapsed rather than thickened, and a personal knowledge of expanded representational techniques must be nurtured. Furthermore, as a means to push student emphasis beyond an adjacency-laden visual field of computer-generated outputs to the creation of an architectural representation with both effective and engaging qualities, then Composite Drawings present one such opportunity.

Fig 7. Composite Drawing: Hybridized Urban Infrastructure. 2'-0" high x 8'-0" wide. Taylor Nielsen, Spring 2011.

Definition

A low-level Composite Drawing exists as soon as varied drawing types are combined in the same paperspace. However, a high-level Composite Drawing is a two-dimensional architectural representation which incorporates, at minimum, a range of measured drawing and pictorial image types that consider their own relative composition within a single paperspace. The effect achieved is one of establishing intentional and engaging dialogues between multiple drawings so the viewer is drawn to consider the graphic information in a sustained way.

M. Saleh Uddin’s title “Composite Drawing: Techniques for Architectural Design Presentation,” (McGraw Hill, 1996) remains the premier volume dedicated to this drawing type. Published after the peak of Deconstructivism, and while the most compelling architectural representations were emerging from southern California, it was at the time of its publishing, an excellent survey of contemporary Composite Drawings.

However, outside of Uddin’s Introduction, his book only showcases a range of examples executed between 1977 to 1996, which in turn may suggest to some that this drawing type was in its infancy, and perhaps lacked a deeper history in architectural representation. Whereas both Uddin and fellow author Rendow Yee correctly state that competition submission requirements have prompted architects to experiment with Composite Drawings in a positive way, it is incorrect to believe they are relatively new. In contrast to the claim that a movement toward Composite Drawings occurred in the 1980s (Yee 496), Composite Drawings in Architecture in fact have a deep history spanning hundreds of years. The popular rise of Composite Drawings was less of a flashpoint in the 1980s, and more of a slow burn with hundreds of examples generated since the 1500s.

Qualities and Aspects

Whereas layouts establish no expectation for drawings or images beyond their respective placement, Composite Drawings owe their respective effectiveness to particular compositional strategies that have proven themselves over time. These strategies are not geometry-based gestures nor motifs across a paperspace, but rather are redeeming qualities and aspects of the content itself. Reflecting upon the better examples of student work that have emerged from (8) years of Composite Drawings as an academic deliverable in design studios, these features can be identified and explained on their own terms:

Layering: For a Composite Drawing to attain any minimum level of effectiveness and engagement, the author must construct the paperspace as a series of multiple, stacked perceptual layers. This allows for high versatility of the paperspace, and also empowers the author to organize the architectural content with maximum flexibility. With each perceptual layer created, they afford the opportunity for specific images to clip, mask, or overlap with other images. However, these layers do not rule out the possibility for cross-referential relationships between two similar drawings – it is much easier to collapse two layers into one than the inverted alternative. Such relationships are beneficial in which proximity triggers the recognition of projected relationships between identically-scaled and aligned orthographic drawings. However, the liability of not establishing perceptual layers is equal to one perceptual layer closely
associated with one single paperspace. All drawings and images located on this single layer maintain their own extents and must respectfully co-exist.

Separation: If the desired subject matter is largely or completely contained within the extents of a given image, there is value in the separation of the background from the desired foreground content. The effect achieved isolates the subject in a way that speeds recognition by the viewer, and lends itself well for a variety of experiments in overlapping. Portrait studios recognize and understand this effect, which is why they typically use abstracted backdrops so as to throw greater visual emphasis on the foreground person subject. For architectural subjects, this often leads to the elimination of all non-architectural environmental graphic information in the source image. In terms of file types, these are likely either .png or .tif files in which layered clipping paths can be created, controlled, preserved and saved within the native file, and will then actively update changes made to their respective referenced selves in a page layout application such as InDesign.

Overlapping: Although it is possible to create two perceptual layers without having any two drawings or images physically overlap, the presence of overlapped images immediately guarantees the establishment of at least two perceptual layers in the Composite Drawing. In the case of two raster images overlapping, one may either opaquely mask the other, or possess an amount of transparency in which one dissipates to reveal the other beyond. There are numerous creative opportunities for overlapping that come with the introduction of vector data. In the case of a vector drawing overlapping a raster image, a decision needs to be made if the drawing possesses its own background, or if the raster condition beyond is either sufficient for, or outrightly desirable, as a background for the foreground drawing. Although this raster image could be a photograph, computer rendering or painted color field, the legibility of a linework drawing is largely dependent upon its amount of contrast with its respective background. To this end, higher contrast conditions are more effective than low contrast conditions, and visually homogenous backgrounds are more effective than differentiated backgrounds. In instances where larger fields of tone occur, such as in the skyplane of an exterior perspective, or the section cutting plane of a rendered perspectival section, these areas serve as effective backdrops for vector line drawings. Overlapping of vector data over raster data does introduce a technical problem however. Due to the nature of pigment applied to the surface of plotter paper, an author must also boost the lineweights to the original vector drawing if lighter linework on a darker background is desirable. In this case, the plotter heads are applying pigment around the perimeter of the lighter profile, and most paper types will wick the darker pigment into the space of the lighter linework, thereby affecting some type of compromise to lineweights.

Hierarchy: Being strategic with the relative size of drawings and images in relation to each other will lead to improved legibility. Being strategic with the relative size of drawings and images in relation to the given paperspace will lead to the command of a viewer’s attention. When viewing an adjacency-laden layout, the absence of hierarchy prompts a viewer from the western hemisphere to read the drawing in the same direction as s/he would read a book – Starting from the top left corner, the eye scans from left to right (as you are now reading text) before scanning from the top to the bottom. Orchestrating the relative size of drawings and images on a paperspace however allows the author to redirect emphasis from the more important aspects of the architectural proposal to the less important aspects. Similarly, the author may want to establish a reading that moves from the more general aspects of the architectural proposal to the more specific. Visual emphasis is necessary to re-position a viewer’s starting point for consideration. Authors have often selected the exterior perspective to be the largest image on the Composite Drawing paperspace due to its prevailing tendenancy as the most provocative image type in architectural representation.

Illusion of Spatial or Atmospheric depth: When considering the subject matter of a respective pictorial image, perspectives with deeper visual range are superior to those with shallow visual range. While deep range can be shortened through Photoshop manipulation, short range cannot be extended. The deeper the visual range that is present in the most prominent pictorial image, the greater number of opportunities the author has to create new perceptual layers.

Projected relationships: The intentional positioning of two or more measured drawings to establish a projected relationship between architectural elements is historically the most popular strategy for Composite Drawings. The profile of a symmetrical building may be complete, but within this boundary is a rendered elevation occupying one half of the building, and a cut-away section in the other half. Top-Bottom relationships were often used to correspond an elevation to plan drawing or an elevation to section drawing. Historical examples of Composite Drawings that represent this arrangement include drawings by Palladio, LeDoux, Lequeu, and Boullée. However, in some cases, the author will decide to orient elevations around the perimeter of a central plan, where the elevation groundplane line shares the outside edge of a plan. In this latter case, historical examples include drawings by William Kent and Borden & Andrews.

Abstraction: The manipulated extension of either skyplanes or groundplanes found in an exterior perspective lend themselves very well to also serving as backgrounds for other drawings and images. It is through the dual use of these particular raster fields or value shapes that creates a helpful level of abstraction, and circumvents the need to deliberately end one picture space before the next begins. Having multiple drawings or images engaged with a single element, such as a shared poché ground condition in section, further uses abstraction for compositional gain.

Color: Although our HDMI-capable graphics cards can now differentiate between 1.073 billion distinct colors, it is inadvisable to use all of them in a single Composite Drawing. Instead, across the fullness of a composite drawing paperspace, a muted color range of softer tones is advisable. Although muted and saturated color palettes currently prevail, the increasing popularity of diagramming is expanding the number of colors typically found in (Dutch)
architectural representation. However, Composite Drawings can also be conceived and executed in greyscale value with one spot color introduced to activate the paperspace and call attention to those highlighted elements.

Effective use of White Space: This is so far the single most underutilized compositional feature for students to use in the creation of new Composite Drawings. There seems to be a prevailing distrust of whitespace, as uncovered viewable paper is somehow considered a residual effect of not having enough rendered content to cover the entire paperspace. This is consistent in observing authors beginning their efforts at the outside edges and working inward, compared with beginning in the center of the paperspace and working outward.

Edge Breach: This very specific operation can only take place when two distinct and separate images are overlapping. By intentionally locating the edge of a background inboard of the extents of a foreground subject, then the foreground image appears to be vaulting forward of the composite drawing picture plane. This highly effective strategy for creating the illusion of spatial depth both confirms our understanding of the flat two-dimensional background surface, yet brilliantly challenges and reconstitutes our understanding of the foreground subject. Introducing an edge breach is a simple compositional move, yet it is so effective that all viewers will visually interpret the breaching foreground subject as three-dimensional. Historical examples that contain edge breaches include Composite Drawings by Giovanni Piranesi and Frank Lloyd Wright.

Physical size: One of the more confusing factors in our declining culture of architectural representation is that drawing sizes are too often determined in the choice of smaller industry-standard sheet sizes. In 2012, this is incredibly ironic as the vast majority of architectural representations are printed from a roll of 36” wide paper on plotters with the technological capability of making approximately 20’ long plots. Today, Composite Drawings present an opportunity to once again create drawings with a tangible physical presence as commonly found in distinguished mid-century architectural offices.

Fig 8. Composite Drawing: Hybridized Urban Infrastructure. 2’-0” high x 8’-0” wide. Adam Post, Spring 2011.

Conclusion

A Composite Drawing is comprised of various measured and non-measured drawing and image types, yet possesses strong cohesion as a single drawing unit. The creation of a Composite Drawing becomes a deliberate and invested effort unto itself, and surpasses effective representational legibility to find higher value as an engaging two-dimensional graphic artifact. Composite Drawings command a greater sustained consideration of the architectural content by the viewer, prompting both the eye to scan across the paperspace surface and the mind to seek higher levels of information about the forthcoming architectural proposal. In turn, distinguished Composite Drawings achieve this in part through their respective physical presence and compositional merit.

While Composite Drawings are excellent presentation vehicles for either speculative projects or academic student work, their cruel reality is that they still represent unbuilt buildings which, as Paul Rudolph observes, “can never truly be drawn and no model or photograph can ever show the ultimate nature” (Rudolph 14).

Bibliography


